کنترل بهینه در برنامه ریزی مسیر بازوهای مکانیکی افزونه با رابط نهایی انعطاف پذیر بر اساس حرکت صلب در مساله تعقیب مسیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران

2 استادیار، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

چکیده

این مقاله روش کنترل بهینه حلقه باز را برای طراحی مسیر بهینه بازوهای مکانیکی با رابط نهایی انعطاف پذیر و پایه ثابت در مساله تعقیب مسیر توسعه خواهد داد. در این روش بدون در نظر گرفتن انعطاف پذیری، فضای جواب مفاصل برای حرکت صلب بازوی مکانیکی بدست می آید. با انتخاب مناسب بردار حالت، تابع هدف و قیدهای سیستم به فرم کلاسیک مساله بهینه سازی تبدیل می گردند. با استفاده از اصل کمینگی پونتریاگین، معادلات به مساله مقدار مرزی دو نقطه ای تبدیل می شود. جهت تصدیق روش ارائه شده، شبیه سازی برای بازوی مکانیکی انعطاف پذیر با سه رابط انجام شده است. نتایج به دست آمده و بررسی های صورت گرفته، کارآمدی روش ارایه شده را نشان می دهند.

کلیدواژه‌ها

موضوعات


[1] Kiang C. T., Spowage A., Yoong C. K., Review of controland sensor system of flexible manipulator, Journal of Intelligentand Robotic Systems, Vol.77, No.1, pp. 187-213, 2015.
[2] Flanz J., Design approach for highly accurate patient positioning system for NPTC, in: Proceedings of the PTOOG XXV and Hydrotherapy Symposium, Belgium, 1996.
[3] I.C. Lin, L.C. Fu, Adaptive hybrid force/position control of a flexible manipulator for automated deburring with online cutting trajectory modification, Proceedings of the IEEE International Conference on Robotics and Automation 1 (1998) 818–825.
[4] Chang L.H., Fu L.C., Nonlinear adaptive control of a flexible manipulator for automated deburring, Proceedings of the IEEE International Conference on Robotics and Automation 4 (1997) 2844–2849.
[5] Pfeiffer F., Bremer H., Figueiredo J., Surface polishing with flexible link manipulator, European Journal of Mechanics A/Solids 15 (1) (1996) 137–153.
[6] Fukuda T., Flexibility control of elastic robot arms, Journal of Robotic Systems 2 (1) (1985) 73–88.
[7] Yue S., Henrich D., Xu W.L., Tso S.K., Point-to-point trajectory planning of flexible redundant robot manipulators using genetic algorithms, Robotica, Vol. 20, No. 3, pp. 269-280, 2002.
[8] Karami N., Korayem M. H., Shafei A. M., Rafee Nekoo S., Theoritical and experimental investigation of dynamic load carrying capacity of flexible-link manipulator in point-to-point motion, Modares Mechanical Engineering, Vol. 14, No. 15, pp. 199-206, 2015.
[9] Wilson D. G., Robinett R.D., Eisler G.R., "Discrete dynamic programming for Optimized path planning of flexible robots", Proceeding of the International Conference on Intelligent Robot and Systems(IROS), Vol. 3, pp. 2918-2923, 2004.
[10] Furuno S., Yamamoto M., Mohri A., Trajectory planning of mobile manipulator with stability consideration", Proceeding of IEEE International Conference on Robotics and Automation(ICRA), Vol. 3, pp. 3403-3408, 2003.
[11] Sentinella M. R., Casalino L., Genetic algorithm and indirect method coupling for low thrust trajectory optimization", Proceedings of 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, USA,  2006.
[12] Haddad M., Chettibi T., Hanchi S., Lehtihet H. E., Optimal motion planner of mobile manipulators in generalized point-to-point task, 9th IEEE International Workshop on Advanced Motion Control, pp. 300–306, 2006.
[13] Rahimi H. N., Korayem M. H., Nikoobin A., Optimal motion planning of manipulators with elastic links and joints in generalized point-to-point task, 33rd ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1167-1174 , 2009.
[14] Korayem M. H., Rahimi H. N., Nikoobin A., Path planning of mobile elastic robotic arms by indirect approach of optimal control, International Journal of Advanced Robotic Systems, Vol. 8, No. 1, pp. 10-20, 2011.
[15] Korayem M. H., Rahimi H. N., Nikoobin A., Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joint, Applied Mathematical Modelling, Vol. 36, No. 7, pp. 3229–3244, 2012.
[16] Heidari H. R., Korayem M. H., Haghpanahi M., Batlle V. F., Optimal trajectory planning for lexible link manipulators with large detection using a new displacements approach, Journal of Intelligent and Robotic Systems, Vol. 72, No. 3-4, pp. 287–300, 2013.
[17] Shukla A., Singla E., Wahi P., Dasgupta B., A direct vibrational method for planning monotonically optimal paths for redundant manipulators in constrained workspaces, Robotics and Autonomous System, Vol. 61, No. 2, pp. 209-220, 2013.
[18] Lou J., Wei Y., Li G., Yang Y., Xie F., Optimal trajectory planning and linear velocity feedback control of a flexible piezoelectric manipulator for vibration suppression, Shock and Vibration, 2015.
[19] Stilman M., Atkeson C. G., Kuffner J. J., Zeglin G., Dynamic programming in reduced dimensional spaces: Dynamic planning for robust biped locomotion", International Conference on Robotics and Automation, Barcelona, Spain, pp. 2399-2404, 2005.
[20] Bakker B., Zivcovic Z., Krose B., Hierarchical dynamic programming for robot path planning, IEEE/RSJ International Conference on Intelligent Robot and Systems(IROS), Edmonton, Canada, pp. 2756-2761, 2005.
[21] Korayem M. H., Irani M., Charesaz A., Korayem A. H., Hashemi A., Trajectory planning of mobile manipulators using dynamic programming approach, Robotica, Vol. 31, No. 04, pp. 643-656, 2013.
[22] Abe A., Komuro K., Minimum energy trajectory planning for vibration control of a flexible manipulator using a multi-objective optimization approach, International Journal of Mechatronics and Automation, Vol. 2, No. 4, pp. 286-294, 2012.
[23] Tabealhojeh H., Ghanbarzadeh A., "Two steps optimization path planning algorithm for robot manipulators using imperialist competitive algorithm, 2th RSI/ISM International Conference on IEEE in Robotics and Mechatronics (ICROM), pp. 801-806 , 2014.
[24] Chu M., Chen G., Jia Q. X., Gao X., Sun H. X., Simultaneous positioning and non-minimum phase vibration suppression of slewing flexible link manipulator using only jointactuator, Journal of Vibration and Control, Vol.20, No. 10, pp. 1488-1497, 2014.
[25] Meirovitch L., Analytical methods in vibrations, Mcmillan, New York, USA, 1967.
[26] Rao S. S., Vibration of Continuous Systems, 4th Edittion, Chapter 11, New Jersey: Wiley & Sons, 2007.
[27] Korayem M. H., Nazemizadeh M., Dynamic load carrying capacity of flexible manipulators using finite element method and pontryagin's minimum principle, Journal of Optimization in Industrial Engineering, Vol. 6, No. 12, pp. 17-24, 2013.
[28] Wachter A., Biegler L. T., On the implementation of an interior point filter line search algorithm for large scale nonlinear programming, Mathematical programming, Vol. 106, No. 1, pp.25-57, 2006.
[29] Bock H. G., Plitt K. J., A multiple Shooting Algorithm for direct solution of optimal control problems, Proceeding of the 9th IFAC World Congress, pp. 242-247, 1984.
[30] Hargraves C. R., Paris S. W., Direct trajectory optimization using programming and collocation, Journal of Guidance, Control, and Dynamics,  Vol. 10, No. 4, pp. 338-342, 1987.
[31] Bessonnet G., Chessé S., Optimal dynamics of actuated kinematic chains, Part 2: Problem statements and computational aspects, European Journal of Mechanics-A/Solids, Vol. 24, No. 3, pp. 472-490, 2005.
[32] Callies R., Rentrop P., Optimal control of rigid link manipulators by indirect methods, GAMM-Mitteilungen, Vol. 31, No. 1, pp. 27 – 58, 2008.
[33] Kirk D. E., Optimal Control Theory: an introduction, Prentice Hall, Englewood Cliffs, NJ, 2012.
[34] Homaei H., Keshmiri M., Optimal trajectory planning for minimization vibration of flexible redundant cooperative manipulators, Advanced Robotic, Vol.23, No.12-13, pp. 1799-1816, 2009.