مدل‌سازی الکترومکانیکی تنگی دریچه آئورتی با خواص هایپرالاستیک و ویسکوالاستیک میوکاردیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکاترونیک، دانشگاه تبریز، تبریز، ایران

2 استادیار، گروه مهندسی مکاترونیک، دانشگاه تبریز، تبریز، ایران

چکیده

بیماری‌های قلبی‌عروقی باعث بیشترین میزان مرگ و میر در جهان هستند و درمان آن‌ها دارای اهمیت زیادی است. مدل‌سازی محاسباتی از روش‌های نوینی است که می‌تواند به متخصصان برای ارائه راهکارهای درمانی و جراحی تاثیرگذارتر برای بیماران کمک کند. در این پژوهش، یک چهارچوب چند فیزیکی برای مدل‌سازی الکترومکانیکی قلب انسان استفاده شده است تا رفتار قلب در بیماری تنگی دریچه آئورتی در دو حالت هایپرالاستیک و ویسکوالاستیک شبیه‌سازی شود. با بکارگیری نرم‌افزار COMSOL Multiphysics، رویکرد کاملا جدیدی برای تعیین فشار بطنی در این نرم‌افزار ارائه شده است که پیاده‌سازی آن سر راست‌تر بوده و نیازی به کدنویسی ندارد و درستی آن اعتبارسنجی شده است. مشاهده شد که در هر دو حالت هایپرالاستیک و ویسکوالاستیک فشار بطنی در تنگی دریچه آئورتی به طور چشمگیری افزایش می‌یابد و حجم ضربه‌ای کاهش پیدا می‌کند. همچنین، حالت ویسکوالاستیک در مقایسه با حالت هایپرالاستیک تغییر شکل نسبتا کمتری را از خود نشان داد و باعث میرا شدن حرکات میوکاردیوم شد. پیاده‌سازی مدل ساده بوده و در آینده می‌تواند برای مدل‌سازی انواع بیماری‌های قلبی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


[1]  Klabunde R., Cardiovascular physiology concepts. Lippincott Williams & Wilkins, Sydney, 2011.
[2]  Voorhees A. P. and Han H. C., Biomechanics of cardiac function. Comprehensive Physiology, Vol. 5, No. 4, pp. 1623-1644, 2011.
[3]  Czarny M. J. and Resar J. R., Diagnosis and management of valvular aortic stenosis. Clinical Medicine Insights: Cardiology, Vol. 8, No. pp. CMC. S15716, 2014.
[4]  Hall J., Guyton and Hall textbook of medical physiology. Elsevier, Philadelphia, 2016.
[5]  Guccione J., McCulloch A. and Waldman L., Passive material properties of intact ventricular myocardium determined from a cylindrical model. Journal of Biomechanical Engineering, Vol. 113, No. 1, pp. 42-55, 1991.
[6]  Holzapfel G. A. and Ogden R. W., Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philosophical Transactions of the Royal Society, A: Mathematical, Physical & Engineering Sciences, Vol. 367, No. 1902, pp. 3445-3475, 2009.
[7]  Cansız F. B. C., Dal H. and Kaliske M., An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Computer Methods in Biomechanics and Biomedical Engineering, Vol. 18, No. 11, pp. 1160-1172, 2015.
[8]  Sommer G., Schriefl A. J., Andrä M., Sacherer M., Viertler C., Wolinski H. and Holzapfel G. A., Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomaterialia, Vol. 24, No. pp. 172-192, 2015.
[9]  Gültekin O., Sommer G. and Holzapfel G. A., An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Computer Methods in Biomechanics and Biomedical Engineering, Vol. 19, No. 15, pp. 1647-1664, 2016.
[10]  Propp A., Gizzi A., Levrero-Florencio F. and Ruiz-Baier R., An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion. Biomechanics and Modeling in Mechanobiology, Vol. 19, No. 2, pp. 633-659, 2020.
[11]  Zhang W., Capilnasiu A. and Nordsletten D., Comparative analysis of nonlinear viscoelastic models across common biomechanical experiments. Journal of Elasticity, Vol. 145, No. 1, pp. 117-152, 2021.
[12]  Nordsletten D., Capilnasiu A., Zhang W., Wittgenstein A., Hadjicharalambous M., Sommer G., Sinkus R. and Holzapfel G. A., A viscoelastic model for human myocardium. Acta Biomaterialia, Vol. 135, No. pp. 441-457, 2021.
[13]  Zhang W., Jilberto J., Sommer G., Sacks M. S., Holzapfel G. A. and Nordsletten D. A., Simulating hyperelasticity and fractional viscoelasticity in the human heart. Computer Methods in Applied Mechanics and Engineering, Vol. 411, No. pp. 116048, 2023.
[14]  Tikenoğulları O. Z., Costabal F. S., Yao J., Marsden A. and Kuhl E., How viscous is the beating heart? Insights from a computational study. Computational Mechanics, Vol. 70, No. 3, pp. 565-579, 2022.
[15]  Regazzoni F., Salvador M., Africa P. C., Fedele M., Dede L. and Quarteroni A., A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation. Journal of Computational Physics, Vol. 457, No. pp. 111083, 2022.
[16]  Bucelli M., Zingaro A., Africa P. C., Fumagalli I., Dede' L. and Quarteroni A., A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart. International Journal for Numerical Methods in Biomedical Engineering, Vol. 39, No. 3, pp. e3678, 2023.
[17]  Berberoğlu E., Solmaz H. O. and Göktepe S., Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions. European Journal of Mechanics - A/Solids, Vol. 48, No. pp. 60-73, 2014.
[18]  Sainte-Marie J., Chapelle D., Cimrman R. and Sorine M., Modeling and estimation of the cardiac electromechanical activity. Computers & structures, Vol. 84, No. 28, pp. 1743-1759, 2006.
[19]  Cansız B., Sveric K., Ibrahim K., Strasser R. H., Linke A. and Kaliske M., Towards predictive computer simulations in cardiology: Finite element analysis of personalized heart models. Journal of Applied Mathematics and Mechanics / Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 98, No. 12, pp. 2155-2176, 2018.
[20]  Lee Y., Cansız B. and Kaliske M., Computational modelling of mechano-electric feedback and its arrhythmogenic effects in human ventricular models. Computer Methods in Biomechanics and Biomedical Engineering, Vol. 25, No. 15, pp. 1767-1783, 2022.
[21]  Ahmad Bakir A., A multiphysics fluid-electromechanical finite element model of cardiac ventricles for simulation of pathologies and treatments. Doctoral Dissertation, UNSW Sydney, 2018.
[22]  Ahmad Bakir A., Al Abed A., Stevens M. C., Lovell N. H. and Dokos S., A multiphysics biventricular cardiac model: Simulations with a left-ventricular assist device. Frontiers in physiology, Vol. 9, No. pp. 1259, 2018.
[23]  Stella S., Regazzoni F., Vergara C., Dede L. and Quarteroni A., A fast cardiac electromechanics model coupling the Eikonal and the nonlinear mechanics equations. Mathematical Models and Methods in Applied Sciences, Vol. 32, No. 08, pp. 1531-1556, 2022.
[24]  Colorado-Cervantes J., Nardinocchi P., Piras P., Sansalone V., Teresi L., Torromeo C. and Puddu P., Patient-specific modeling of left ventricle mechanics. Acta Mechanica Sinica, Vol. 38, No. 1, pp. 621211, 2022.
[25]  Chan B. T., Ahmad Bakir A., Al Abed A., Dokos S., Leong C. N., Ooi E. H., Lim R. and Lim E., Impact of myocardial infarction on intraventricular vortex and flow energetics assessed using computational simulations. International Journal for Numerical Methods in Biomedical Engineering, Vol. 35, No. 6, pp. e3204, 2019.
[26]  Nordsletten D., McCormick M., Kilner P., Hunter P., Kay D. and Smith N., Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function. International Journal for Numerical Methods in Biomedical Engineering, Vol. 27, No. 7, pp. 1017-1039, 2011.
[27]  Alharbi Y., Al Abed A., Bakir A. A., Lovell N. H., Muller D. W., Otton J. and Dokos S., Fluid structure computational model of simulating mitral valve motion in a contracting left ventricle. Computers in Biology and Medicine, Vol. 148, No. pp. 105834, 2022.
[28]  Bakir A. A. and Dokos S., A gap junction-based cardiac electromechanics model. In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 2015.
[29]  Leong C. N., Lim E., Andriyana A., Al Abed A., Lovell N. H., Hayward C., Hamilton‐Craig C. and Dokos S., The role of infarct transmural extent in infarct extension: A computational study. International Journal for Numerical Methods in Biomedical Engineering, Vol. 33, No. 2, pp. e02794, 2017.
[30]  Watanabe H., Sugiura S., Kafuku H. and Hisada T., Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophysical Journal, Vol. 87, No. 3, pp. 2074-2085, 2004.
[31]  Maughan W., Sunagawa K., Burkhoff D. and Sagawa K., Effect of arterial impedance changes on the end-systolic pressure-volume relation. Circulation Research, Vol. 54, No. 5, pp. 595-602, 1984.