بررسی تجربی تأثیر فرآیند پرس در کانال زاویه دار مساوی بر ریز ساختار و سختی کامپوزیت مس- آهن تولید شده به روش متالورژی پودر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی ساخت و تولید، دانشگاه تبریز، تبریز، ایران

2 کارشناسی ارشد، گروه مهندسی ساخت و تولید، دانشگاه تبریز، تبریز، ایران

چکیده

هدف از این پژوهش تولید کامپوزیت مس-آهن به روش متالورژی پودر در کانال زاویه­دار مساوی و بررسی ریزساختار و سختی آن بعد از فرایند است. مس و آهن اتمیزه با دانه بندی زیر 63 میکرون با نسبت 9 به 1 مخلوط و سپس در داخل قالب استوانه­ای، با فشار 450 مگاپاسکال فشرده شد. نمونه­ها در داخل کوره تونلی با دمای 920 درجه سلسیوس تف­جوشی شده، سطح آن­ها سنگ­زنی و تحت فرایند پرس در کانال زاویه­دار مساوی چند پاسه با فشار برگشتی قرار گرفت. ارزیابی­های انجام شده، نشان می­دهد که سختی برای نمونه سه پاس پرس شده در کانال زاویه­دار مساوی در مقایسه با نمونه تف جوشی شده خام، حدود 190 درصد افزایش یافته است. متوسط اندازه دانه­های کامپوزیت مس-آهن با 3 درصد نیکل یک پاسه، در مقایسه با حالت سه پاسه به میزان 53 درصد کاهش یافته است. چگالی نظری نمونه­ها پس از تولید، به صورت چشمگیری افزایش یافته، بطوریکه مقدار چگالی از 88 درصد برای نمونه تف­جوشی شده خام به مقدار 98 درصد برای نمونه­ها در شرایط فرایند پرس شده سه پاسه در کانال زاویه­دار مساوی، افزایش نشان می­دهد.

کلیدواژه‌ها

موضوعات


[1]  Zhou, H., Yao, P., Xiao, Y., Fan, K., Zhang, Z., Gong, T., Zhao, L., Deng, M., Liu, C. and  Ling, P., Friction and Wear Maps of Copper Metal Matrix Composites with Different Iron Volume Content. Tribology International, Vol. 132, pp. 199-210, 2019.
[2] Xiao, Y., Zhang, Z., Yao, P., Fan, K., Zhou, H., Gong, T., Zhao, L. and  Deng, M., Mechanical and Tribological Behaviors of Copper Metal Matrix Composites for Brake Pads Used in High-Speed Trains. Tribology International, Vol. 119, pp. 585-592, 2018.
[3] Su, L., Gao, F., Han, X., Fu, R. and  Zhang, E., Tribological Behavior of Copper–Graphite Powder Third Body on Copper-Based Friction Materials. Tribology Letters, Vol. 60, No. 2, pp. 1-12, 2015.
[4] Peng, T., Yan, Q., Li, G. and  Zhang, X., The Influence of Cu/Fe Ratio on the Tribological Behavior of Brake Friction Materials. Tribology Letters, Vol. 66, No. 1, pp. 1-12, 2018.
[5] Xiong, X., Chen, J., Yao, P., Li, S. and  Huang, B., Friction and Wear Behaviors and Mechanisms of Fe and Sio2 in Cu-Based P/M Friction Materials. Wear, Vol. 262, No. 9-10, pp. 1182-1186, 2007.
[6] Ranjbar, K., The Effect of Niobium Oxide (Nb2o5) on the Sintering Behavior of Composite Al2o3-Zro2.Advanced Processes in Materials Engineering, Vol. 12, No. 1, pp. 11-24, 2018.
[7] www.patron.group.
[8] Wong-Ángel, W. D., Téllez-Jurado, L., Chávez-Alcalá, J. F., Chavira-Martínez, E. and  Verduzco-Cedeño, V. F., Effect of Copper on the Mechanical Properties of Alloys Formed by Powder Metallurgy. Materials & Design, Vol. 58, pp. 12-18, 2014.
[9] German, R. M., Powder Metallurgy Science. Metal Powder Industries Federation, 105 College Rd. E, Princeton, N. J. 08540, U. S. A, 1984. 279, 1984.
[10] Vincent, C., Silvain, J.-F., Heintz, J.-M. and  Chandra, N., Effect of Porosity on the Thermal Conductivity of Copper Processed by Powder Metallurgy. Journal of Physics and Chemistry of Solids, Vol. 73, No. 3, pp. 499-504, 2012.
[11] Moshksar, M. M., Afsari, A. and  Ahmadi, S. Y., Microstructure, Mechanical and Electrical Properties of Commercially Pure Copper Deformed Severely by Equal Channel Angular Pressing. Modares Mechanical Engineering, Vol. 14, No. 15, pp. 257-266, 2015.
[12] Nejadseyfi, O., Shokuhfar, A. and  Moodi, V., Segmentation of Copper Alloys Processed by Equal-Channel Angular Pressing. Transactions of Nonferrous Metals Society of China, Vol. 25, No. 8, pp. 2571-2580, 2015.
[13] Wei, W., Guang, C., Jingtao, W. and  Guoliang, C., Microstructure and Tensile Properties of Ultrafine Grained Copper Processed by Equal-Channel Angular Pressing. Rare Metals, Vol. 25, No. 6, pp. 697-703, 2006.
[14] Wang, Y. L., Lapovok, R., Wang, J. T., Qi, Y. S. and  Estrin, Y., Thermal Behavior of Copper Processed by Ecap with and without Back Pressure. Materials Science and Engineering: A, Vol. 628, pp. 21-29, 2015.
[15] Valiev, R. Z. and  Langdon, T. G., Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Progress in materials science, Vol. 51, No. 7, pp. 881-981, 2006.
[16] Horita, Z., Fujinami, T. and  Langdon, T. G., The Potential for Scaling Ecap: Effect of Sample Size on Grain Refinement and Mechanical Properties. Materials Science and Engineering: A, Vol. 318, No. 1-2, pp. 34-41, 2001.
[17] Fu, R., Gao, F. and  Song, B. Y., Effects of Fe on Friction and Wear Properties of Cu-Based Friction Aterial. in Proceeding of  Trans Tech Publ, pp. 1830-1833.
[18]  قندی, آ., آرین, مسچیان صنایعی, بررسی تاثیر عناصر نیکل، مولیبدن، مس و کربن بر روی سختی، دانسیته و خواص ریزساختاری قطعات فولادی ساخته شده به کمک روش متالورژی پودر. فرآیندهای نوین در مهندسی مواد, د.2، ش. 2، ص 25-30، 1387.
[19] Semel, F., Properties of Parts Made from an Ancorbond Processed Carbon--Nickel-Steel Powder Mix(Fn-0208). 1989 Advances in Powder Metallurgy, Vol. 1, pp. 9-23, 1989.
[20] Lowe, T. C. and  Valiev, R. Z., Investigations and Applications of Severe Plastic Deformation,  Springer Science & Business Media, 2000.
]21[  Bean, J. J. and  McKenna, K. P., Origin of Differences in the Excess Volume of Copper and Nickel Grain Boundaries. Acta Materialia, Vol. 110, pp. 246-257, 2016.
]22[ Rana, G., Dhiman, P., Kumar, A., Vo, D. V. N., Sharma, G., Sharma, S. and  Naushad, M., Recent Advances on Nickel Nano-Ferrite: A Review on Processing Techniques, Properties and Diverse Applications. Chemical Engineering Research and Design, Vol. 175, pp. 182-208, 2021.
]23[ Miyamoto, G. and  Furuhara, T., Interaction of Alloying Elements with Migrating Ferrite/Austenite Interface. Isij International, Vol. 60, No. 12, pp. 2942-2953, 2020.