شبیه سازی عددی انتقال گرمای همرفتی اجباری نانو سیال در داخل میکرو کانال موج‌دار تحت میدان مغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، موسسه آموزش عالی آیندگان، تنکابن، ایران

چکیده

در این مطالعه انتقال گرمای همرفتی اجباری جریان لایه‌ای نانو سیال آب و اکسید مس در میکرو کانال موج‌دار  در حضور میدان مغناطیسی با استفاده از روش عددی مورد بررسی قرارگرفته است . معادلات تابع جریان، انتقال گردابه و انرژی به روش تفاضل محدود گسسته سازی شده و با  قراردادن شرایط مرزی توجه به شرایط مرزی موردنظر در محیط نرم‌افزار فرترن حل می‌گردند. تاثیر پارامترهای مختلفی ازجمله عدد رینولدز در محدوده 500-50 ، کسر حجمی 0-10% ، عدد هارتمن 20-0 و دامنه موج‌های 3/0-0 بر عملکرد یک میکرو کانال موج‌دار  موردبررسی قرار می‌گیرد.  با توجه به نتایج به‌دست‌آمده، شکل سینوسی میکرو کانال به‌طور مستقیم بر انتقال گرما تأثیر گذاشته و با افزایش دامنه موج میکرو کانال عدد ناسلت افزایش می‌یابد. از طرفی گردابه های ایجادشده در رینولدزهای بالا نیز سبب بهبود کارایی میکرو کانال و افزایش انتقال گرما می‌گردد. همچنین نتایج نشان می‌دهد که با افزایش عدد هارتمن، خط جریان در نزدیکی دیواره منظم‌تر شده و با توجه به گرادیان دمایی ایجادشده، عدد ناسلت افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


[1]           Aminossadati S, A Raisi, B Ghasemi., Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. 46(10), pp. 1373-1382, 2011.
[2]           Heris SZ, Z Edalati, SH Noie, O Mahian., Experimental investigation of Al2O3/water nanofluid through equilateral triangular duct with constant wall heat flux in laminar flow. 35(13), pp. 1173-1182, 2014.
[3]           Singh A., Thermal conductivity of nanofluids. 58(5), pp. 600-607, 2008.
[4]           Zarringhalam M, Karimipour A, Toghraie D., Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Experimental Thermal and Fluid Science. Sep 1;76, pp.342-51, 2016.
[5]           Das SK, Choi SU, Patel HE., Heat transfer in nanofluids—a review. Heat transfer engineering. Dec 1;27(10), pp.3-19, 2006.
[6]           Öğüt EB, Dilki S., Effect of prandlt number on turbulent heat transfer of corrugated trapezoidal plate heat exchangers using nanofluids. The Online Journal of Science and Technology-April. Apr;9(2), 2019.
[7]           Shehzad N, A Zeeshan, R Ellahi, and K Vafai., Convective heat transfer of nanofluid in a wavy channel: Buongiorno's mathematical model, pp. 446-455, 2016.
[8]           Peng W, Minli B, Jizu L, Liang Z, Wenzheng C, Guojie L., Comparison of multidimensional simulation models for nanofluids flow characteristics. Numerical Heat Transfer, Part B: Fundamentals. Jan 1;63(1), pp.62-83, 2013.
[9]           Zabihi K, F Gholamian, and SJ Vasefi., Experimental and Numerical Investigation of Al O-Water Nanofluid Inside a Triangular Tube. 22(5), pp. 601-607, 2013.
[10]         Heidary H, Kermani MJ., Effect of nano-particles on forced convection in sinusoidal-wall channel. International Communications in Heat and Mass Transfer. Dec 1;37(10), pp.1520-7, 2010.
[11]         Chai L, GD Xia, H Wang., Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. 92, pp. 32-41, 2016.
[12]         Ahmed M, N Shuaib, M Yusoff, M Transfer., Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid. 55(21-22), pp. 5891-5898, 2012.
[13]         Zhou J, Hatami M, Song D, Jing D., Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. International Journal of Heat and Mass Transfer. Dec 1;103, pp.715-24, 2016.
[14]         Moon J, J.R Pacheco, and A Pacheco-Vega., Heat transfer enhancement in wavy micro-channels through multiharmonic surfaces. in ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018.
[15]         Lin L, Zhao J, Lu G, Wang XD, Yan WM., Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude. International Journal of Thermal Sciences. Aug 1;118, pp.423-34, 2017.
[16]         Kirsch KL, Thole KA., Heat transfer and pressure loss measurements in additively manufactured wavy microchannels. Journal of turbomachinery. Jan 1;139(1), pp.011007, 2017.
[17]         Skullong S, Promvonge P, Thianpong C, Jayranaiwachira N, Pimsarn M., Heat transfer augmentation in a solar air heater channel with combined winglets and wavy grooves on absorber plate. Applied Thermal Engineering. Jul 25;122, pp.268-84, 2017.
[18]         Yadav V, Baghel K, Kumar R, Kadam ST., Numerical investigation of heat transfer in extended surface microchannels. International Journal of Heat and Mass Transfer. Feb 1;93, pp.612-22, 2016.
[19]         Kefayati GR., Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution. Powder technology. Jul 1;243, pp.171-83, 2013.
[20]         Malekpour A, B Ghasemi., MAGNETIC FIELD EFFECT ON NATURAL CONVECTION IN A NANOFLUIDFILLED TRIANGULAR ENCLOSURE. 2013.
[21]         Nouri R, M Gorji-Bandpy, D Ganji., Numerical investigation of the effect of magnetic field angle change on forced convection heat transfer of nanofluid in a sinusoidal channel. 15 th fluid dynamics conferens, 2013.
[22]         Aminfar H, Mohammadpourfard M, Zonouzi SA., Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. Journal of Magnetism and Magnetic materials. Feb 1;327, pp.31-42, 2013.
[23]         کوروش, جواهرده, کریمی, حبیب, بررسی عددی جریان ترکیبی سیال غیر نیوتنی با اثر مگنوهیدرودینامیک برای سطح قائم موج دار. مهندسی مکانیک دانشگاه تبریز, (2)44ص:1-7،  2014.
[24]         Nourazar SS, Habibi Matin M, Simiari M., The HPM applied to MHD nanofluid flow over a horizontal stretching plate. Journal of Applied Mathematics. Jan 1;2011.
[25]         Motozawa M, Chang J, Sawada T, Kawaguchi Y., Effect of magnetic field on heat transfer in rectangular duct flow of a magnetic fluid. Physics Procedia. Jan 1;9, pp.190-3, 2010.
[26]         Çelik İ. Solution of Magnetohydrodynamic flow in a rectangular duct by Chebyshev Polynomial Method. Applied Mathematics.;2(3), pp.58-65, 2012.
[27]         شاکر, هادی عباس علیزاده, آریا مطلق صابر شبیه‌سازی عددی انتقال گرمای جابجایی ترکیبی نانوسیال درون کانال دارای حفره روباز با استفاده از مدل غیرهمگن بونگیورنو. مهندسی مکانیک دانشگاه تبریز, 2020.
[28]         Javaherdeh K, M Moslemi, and M Shahbazi., Natural convection of nanofluid in a wavy cavity in the presence of magnetic field on variable heat surface temperature. Journal of Mechanical Science and Technology, 31(4), pp. 1937-1945, 2017.
[29]         Shankar Goud B, Pramod Kumar P, Malga BS., Induced magnetic field effect on MHD free convection flow in nonconducting and conducting vertical microchannel walls. Heat Transfer. Mar;51(2), pp.2201-18, 2022.
[30]         Rashidi MM, Nasiri M, Khezerloo M, Laraqi N. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. Journal of Magnetism and Magnetic Materials. Mar 1;401, pp.159-68, 2016.
[31]         فتاحی, دهقان, مازیار, ولی‌پور, محمدصادق, انتقال حرارت در یک میکرو ‌کولر سه بعدی با نانوسیال عامل تحت تاثیر میدان مغناطیسی. مهندسی مکانیک دانشگاه تبریز. 50:(3)، ص: 173- 165 ،2020
[32]         Mahmoudi A, I Mejri, MA Abbassi., and A.J.P.T. Omri, Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. 256, pp. 257-271, 2014.
[33]         Maxwell JC., A treatise on electricity and magnetism. Vol. 1. Clarendon press, 1873.
[34]         Murshed S, K Leong, and C Yang., Enhanced thermal conductivity of TiO2—water based nanofluids. International Journal of thermal sciences, 44(4), pp. 367-373, 2005.
[35]         Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. Journal of applied physics. Jul 1;106(1), pp.014304, 2009.
[36]         Brinkman HC., The viscosity of concentrated suspensions and solutions. The Journal of chemical physics, 20(4), pp. 571-571, 1952.
[37]         Sheikholeslami M, Rashidi MM, Ganji DD., Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid. Computer Methods in Applied Mechanics and Engineering. Sep 1;294, pp.299-312, 2015.
[38]         Sheikholeslami M, Ganji DD. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy. Oct 1;75, pp.400-10, 2014.
[39]         Javaherdeh K, Moslemi M, Shahbazi M., Natural convection of nanofluid in a wavy cavity in the presence of magnetic field on variable heat surface temperature. Journal of Mechanical Science and Technology. Apr;31(4), pp.1937-45, 2017.
[40]         Wang CC, Chen CK., Forced convection in a wavy-wall channel. International Journal of Heat and Mass Transfer. Jun 1;45(12), pp.2587-95, 2002.