مروری بر اثرات تغییر شکل پلاستیک شدید بر رفتار خوردگی مواد فلزی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مواد، دانشگاه صنعتی سهند تبریز، تبریز، ایران

2 استادیار، دانشکده مهندسی مواد، دانشگاه صنعتی سهند تبریز، تبریز، ایران

چکیده

در تحقیق حاضر، ضمن مرور فرآیندهای تغییر شکل پلاستیک شدید و مکانیزم‌های اصلاح ریزساختار مواد فلزی در آن‌ها، مطالعات پیشین انجام شده در خصوص رفتار خوردگی آلیاژهای مختلف که تحت تغییر شکل پلاستیک شدید قرار گرفته‌اند، بررسی می‌شوند. اندازه دانه به عنوان یک پارامتر متالورژیکی مهم می‌تواند گستره‌ای از خواص مکانیکی، شیمیایی، فیزیکی و الکتروشیمیایی مواد فلزی را تحت تاثیر قرار دهد. در اغلب بررسی‌های انجام ‌‌شده، کاهش اندازه دانه منجر به بهبود خواص یاد شده می­شود. در سالیان اخیر، روش‌های تغییر شکل پلاستیک شدید ورود به محدوده‌ اندازه دانه نانومتری و فوق‌ریز را برای توده مواد فلزی میسر ساخته‌اند. از میان خواص یاد شده، عملکرد خوردگی مواد فوق‌ریزدانه تولید شده به روش‌های تغییر شکل پلاستیک شدید کماکان محل بحث محققین این حوزه است. هدف از این تحقیق، مرور این روش‌ها، مکانیزم ریزدانه شدن طی آن‌ها و اثرات کار سرد شدید بر روی رفتار خوردگی فلزات و آلیاژهای مهندسی مختلف نظیر فولادها، آلومینیوم، تیتانیوم، مس و منیزیم است.

کلیدواژه‌ها

موضوعات


[1]          Sailer T., Herr M., Sockel H.G., Schulte R., Feld H., Prakash L.J., Microstructure and mechanical properties of ultrafine-grained hardmetals, The International Journal of Refractory Metals and Hard Materials, Vol. 19, pp. 553–559, 2001.
[2]          Shaat M., Fathy A., Wagih A., Correlation between grain boundary evolution and mechanical properties of ultrafine-grained metals, Mechanics of Materials, Vol. 143, 103321, 2020.
[3]          Chen Z., Qin M., Yang J., Zhang L., Jia Bi, Qu X., Thermal Stability and Grain Growth Kinetics of Ultrafine-Grained W with Various Amount of La2O3 Addition, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 51, pp. 4113–4122, 2020.
[4]          Gangopadhyay S., Hadjipanayis G.C., Dale B., Sorensen C.M., Klabunde K.J., Papaefthymiou V., A. Kostikas, Magnetic properties of ultrafine iron particles, Physical Review B, Vol. 45, pp. 9778–9787, 1992.
[5]          Meng G., Li Y., Wang F., The corrosion behavior of Fe-10Cr nanocrystalline coating, Electrochimica Acta, Vol. 51, pp. 4277–4284, 2006.
[6]          Muley S.V., Vidvans A.N., Chaudhari G.P., Udainiya S., An assessment of ultra fine grained 316L stainless steel for implant applications, Acta Biomaterialia, Vol. 30, pp. 408–419, 2016.
[7]          Gholami M., Mhaede M., Pastorek F., Altenberger I., Hadzima B., Wollmann M., Wagner L., Corrosion Behavior and Mechanical Properties of Ultrafine-Grained Pure Copper with Potential as a Biomaterial, Advanced Engineering Materials, Vol. 18, pp. 615–623, 2016.
[8]          Geyao L., Yang D., Wanglin C., Chengyong W., Development and application of physical vapor deposited coatings for medical devices: A review, Procedia CIRP. Vol. 89, pp. 250–262, 2020.
[9]          Lee D.W., Yu J.H., Jang T.S., Kim B.K., Nanocrystalline iron particles synthesized by chemical vapor condensation without chilling, Materials Letters, Vol. 59, pp. 2124–2127, 2009.
[10]        Chang I.T.H., Chapter 11 - Rapid solidification processing of nanocrystalline metallic alloys A2  - Nalwa, Hari Singh BT  - Handbook of Nanostructured Materials and Nanotechnology, in: Academic Press, Burlington, pp. 501–532, 2000.
[11]        Natter H., Schmelzer M., Löffler M.-S., Krill C.E., Fitch A., Hempelmann R., Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time X-ray diffraction, The Journal of Physical Chemistry B, Vol. 104, pp. 2467–2476, 2000.
[12]        Hassani-Gangaraj S.M., Cho K.S., Voigt H.-J.L., Guagliano M., Schuh C.A., Experimental assessment and simulation of surface nanocrystallization by severe shot peening, Acta Materialia, Vol. 97, pp. 105–115, 2015.
[13]        E. McCafferty, Introduction to corrosion science, Springer Science & Business Media, 2010.
[14]        Huang C.X., Gao Y.L., Yang G., Wu S.D., Li G.Y., Li S.X., Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing, Journal of Materials Research, Vol. 21, pp. 1687–1692, 2006.
[15]        Peterlechner M., Waitz T., Karnthaler H.P., Nanocrystallization of NiTi shape memory alloys made amorphous by high-pressure torsion, Scripta Materialia, Vol. 59, pp. 566–569, 2008.
[16]        Koch C.C., Top-Down Synthesis Of Nanostructured Materials: Mechanical And Thermal Processing Methods., Reviews on Advanced Materials Science, Vol. 5, pp. 91–99, 2003.
[17]        Yao W., Xiaojing X., Zhenqiang Z., Yunkang Z., Pingan D., Liangsheng S., Microstructure and Property of Multi-Directional Forged 2099 Al-Li Alloy Extrusions, Chinese Journal of Rare Metals, Vol. 6, pp. 4-8, 2014.
[18]        Richert M.W., Features of Cyclic Extrusion Compression: Method, Structure & Materials Properties, Solid State Phenomena, pp. 19–28, 2006.
[19]        Lu K., Lu J., Tao N.R., Surface Nanocrystallization by Surface Mechanical Attrition Treatment, Materials Science Forum, Vol. 579, pp. 91-108, 2008.
[20]        Bagherifard S., Pariente I.F., Ghelichi R., Guagliano M., Fatigue properties of nanocrystallized surfaces obtained by high energy shot peening, Procedia Engineering, Vol. 2, pp. 1683–1690, 2010.
[21]        Tao N., Sui M., Lu J., Lua K., Surface nanocrystallization of iron induced by ultrasonic shot peening, Nanostructured Materials, Vol. 11, pp. 433–440, 1999.
[22]        Hughes D.A., Hansen N., Graded nanostructures produced by sliding and exhibiting universal behavior, Physical Review Letters, Vol. 87, 135503, 2001.
[23]        Li W.L., Tao N.R., Lu K., Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment, Scripta Materialia, Vol. 59, pp. 546–549, 2008.
[24]        Zhang Y., Zhang X., Zhou J., GU Y., Ren X., Deformation of aluminum alloy LY12CZ plate by laser shot peening, Chinese Journal of Lasers, Vol. 33, 1417, 2006.
[25]        Kitahara H., Yada T., Tsushida M., Ando S., Microstructure and evaluation of wire-brushed Mg sheets, Procedia Engineering, Vol. 10, pp. 2737–2742, 2011.
[26]        Koch C.C., Top-down synthesis of nanostructured materials: Mechanical and thermal processing methods, Reviews on Advanced Materials Science, Vol. 5, pp. 91–99, 2003.
[27]        Bagherifard S., Pariente I.F., Ghelichi R., Guagliano M., Fatigue properties of nanocrystallized surfaces obtained by high energy shot peening, Procedia Engineering, Vol. 2, pp. 1683–1690, 2010.
[28]        Strin Y., Vinogradov A., Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Materialia, Vol. 61, pp. 782-817, 2013.
[29]        Lu K., Lu J., Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Materials Science and Engineering: A, Vol. 375, pp. 38-45, 2004.
[30]        Pour-Ali S., Kiani-Rashid A.R., Babakhani A.,  Virtanen S., Severe shot peening of AISI 321 with 1000% and 1300% coverages: A comparative study on the surface nanocrystallization, phase transformation, sub-surface microcracks, and microhardness, International Journal of Materials Research, Vol. 109, pp. 451–459, 2018.
[31]        Pour-Ali P., Kiani-Rashid A.R., Babakhani A., Davoodi A., Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface, Applied Surface Science, Vol. 376, pp. 121–132, 2016.
[32]        Pour-Ali S., Kiani-Rashid A.R. , Babakhani A.,  Virtanen S., Allieta M., Correlation between the surface coverage of severe shot peening and surface microstructural evolutions in AISI 321: A TEM, FE-SEM and GI-XRD study, Surface and Coatings Technolology, Vol. 334, pp. 461–470, 2018.
[33]        Pour-Ali S., Kiani-Rashid A.R., Babakhani A., Surface nanocrystallization and gradient microstructural evolutions in the surface layers of 321 stainless steel alloy treated via severe shot peening, Vacuum, Vol. 144, pp. 152–159, 2017.
[34]        Hassani-Gangaraj S.M., Cho K.S., Voigt H.-J.L., Guagliano M., Schuh C.A., Experimental assessment and simulation of surface nanocrystallization by severe shot peening, Acta Materiallia, Vol. 97, pp.105–115, 2015.
[35]        Bay B., Hansen N., Kuhlmann Wilsdorf D., Materials Science and Engineering A, Vol. 158, pp.139–146, 1992.
[36]        Yan F.K., Tao N.R., Archie F., Gutiérrez-Urrutia I., Raabe D., Lu K., Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains, Acta Materiallia, Vol. 81, pp. 487–500, 2014.
[37]        Bagherifard S., Pariente I.F., Ghelichi R., Guagliano M., Fatigue properties of nanocrystallized surfaces obtained by high energy shot peening, Procedia Engineering, Vol. 2, pp. 1683–1690, 2010.
[38]        Zhang Y., Zhang X., Zhou J., GU Y., Ren X., Deformation of aluminum alloy LY12CZ plate by laser shot peening, Chinese Journal of Lasers, Vol. 33, 1417, 2006.
[39]        Bagherifard S., Guagliano M., Fatigue behavior of a low-alloy steel with nanostructured surface obtained by severe shot peening, Engineering Fracture Mechanics, Vol. 81, pp. 56–68, 2012.
[41]        Lu K., Lu J., Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Materials Science and Engineering: A, Vol. 375, pp. 38–45, 2004.
[42]        Mishra A., Kad B.K., Gregori F., Meyers M.A., Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis, Acta Materillia, Vol. 55, pp. 13–28, 2007.
[43]        Ralston K.D., Birbilis N., Effect of grain size on corrosion: a review, Corrosion, Vol. 66, 75005, 2010.
[44]        Zhang L., Ma A., Jiang J., Yang D., Song D., Chen J., Sulphuric acid corrosion of ultrafine-grained mild steel processed by equal-channel angular pressing, Corrosion Science, Vol. 75, pp. 434–442, 2013.
[45]        Dehghani K., Hosseini M., Nekahi A., Comparing the corrosion behavior of nanograined and coarse-grained interstitial free steels, International Journal of Materials Research, Vol. 104, pp. 999–1006, 2013.
[46]        Miyamoto H., Corrosion of ultrafine grained materials by severe plastic deformation, an overview, Materials Tranactions, Vol. 57, pp. 559–572, 2016.
[47]        Rifai M., Miyamoto H., Fujiwara H., Effects of strain energy and grain size on corrosion resistance of ultrafine grained Fe-20% Cr steels with extremely low C and N fabricated by ECAP, International Journal of Corrosion, Vol. 2015, 386865, 2015.
[48]        Kumar C.S., Mahobia G.S., Podder A.,  Kumar S., Agrawel R.K., Chattopadhyay K., Singh V., Role of ultrasonic shot peening on microstructure, hardness and corrosion resistance of nitrogen stabilised stainless steel without nickel, Materials Research Express, Vol. 6, 2053, 2019
[49]        Run M., Zhang C., Wen L., Zhou H., Zheng W., Effect of surface mechanical attrition treatment on stainless steel corrosion, Surface Engineering, Vol. 37, 739–748, 2021.
[50]        Menezes M.R., Godoy C., Buono V.T.L., Schvartzman M.M.M., Avelar-Batista J.C., Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated AISI 316L steel, Surface and Coatings Technology, Vol. 309, pp. 651–662, 2017.
[51]        Tian W., Li Z., Kang H.F., Cheng F., Chen F., Pang G., Passive film properties of bimodal grain size AA7075 aluminium alloy prepared by spark plasma sintering, Materials (Basel), Vol. 13, 3236, 2020.
[52]        S. Benafia, D. Retraint, S. Yapi Brou, B. Panicaud, and J. L. Grosseau Poussard, “Influence of Surface Mechanical Attrition Treatment on the oxidation behaviour of 316L stainless steel,” Corrosion Science, vol. 136. Elsevier Ltd, pp. 188–200, May 15, 2018.
[53]        Son I.-J., Nakano H., Oue S., Kobayashi S., Fukushima H., Horita Z., Pitting corrosion resistance of ultrafine-grained aluminum processed by severe plastic deformation, Materials Transactions, Vol. 47, pp. 1163–1169, 2006.
[54]        Jiang J., Ma A., Lu F., Saito N., Watazu A., Song D., Zhang P., Nishida Y., Improving corrosion resistance of Al‐11mass% Si alloy through a large number of ECAP passes, Materials and Corrosion, Vol. 62, pp. 848–852, 2011.
[55]        Jiang J., Ma A., Song D., Yang D., Shi J., Wang K., Zhang L., Chen J., Anticorrosion behavior of ultrafine-grained Al-26 wt% Si alloy fabricated by ECAP, Journal of Materials Science, Vol. 47, pp.7744–7750, 2012.
[56]        Korchef A., Kahoul A., Corrosion behavior of commercial aluminum alloy processed by equal channel angular pressing, International Journal of Corrosio, Vol. 2013, 983261, 2013.
[57]        Astaraee A.H., Miresmaeili R., Bagherifard S., Guagliano M., Effects of surface nanocrystallization on the anodic oxidation behavior of Aluminum, Forces in Mechanics, Vol. 4, 100028, 2021.
[58]        Abeens M., Muruganandhan R., Thirumavalavan K., Effect of Low energy laser shock peening on plastic deformation, wettability and corrosion resistance of aluminum alloy 7075 T651, Optik (Stuttg), Vol. 219, 165045, 2020.
[59]        Ralston K.D., Birbilis N., Effect of grain size on corrosion: a review, Corrosion. Vol. 66, 75005, 2010.
[60]        Valiev R.Z., Semenova I.P., Latysh V.V., Rack H., Lowe T.C., Petruzelka J., Dluhos L., Hrusak D., Sochová J., Nanostructured titanium for biomedical applications, Advanced Engineering Materials, Vol. 10 B15–B17, 2008.
[61]        Kim H.S., Kim W.J., Annealing effects on the corrosion resistance of ultrafine-grained pure titanium, Corrosion Science, Vol. 89, pp. 331–337, 2014.
[62]        Balyanov A., Kutnyakova J., Amirkhanova N.A., Stolyarov V.V, Valiev R.Z., Liao X.Z., Zhao Y.H., Jiang Y.B., Xu H.F., Lowe T.C., Corrosion resistance of ultra fine-grained Ti, Scripta Materillia, Vol. 51, pp. 225–229, 2004.
[63]        Chuvil’deev V.N., Kopylov V.I., Nokhrin A.V., Effect of severe plastic deformation realized by rotary swaging on the mechanical properties and corrosion resistance of near-α-titanium alloy Ti-2.5Al-2.6Zr,” Journal of Alloys and Compounds, Vol. 785, pp. 1233–1244, 2019.
[64]        Garbacz H., Pisarek M., Kurzydłowski K.J., Corrosion resistance of nanostructured titanium, Biomolecular Engineering, Vol. 24, pp. 559–563, 2007.
[65]        Miyamoto H., Harada K., Mimaki T., Vinogradov A., Hashimoto S., Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing, Corrosion Science, Vol. 50, pp. 1215–1220, 2008.
[66]        Elibol C., Effect of severe plastic deformation on the precipitation kinetics and the properties of CuCoNiBe alloys, Materials Today Communications, Vol. 31, 103473, 2022.
[67]        Figueiredo R.B., Langdon T.G., Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP, Materials Science and Engineering: A, Vol. 501, pp. 105–114, 2009.
[68]        Ben Hamu G., Eliezer D., Wagner L., The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy, Journal of Alloys Compdounds, Vol. 468, pp. 222–229, 2009.
[69]        Song D., Bin Ma A., Jiang J., Lin P., Yang D., Fan J., “Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution,” Corrosion. Science, Vol. 52, pp. 481–490, 2010.
[70]        Grabski M.W., Korski R., Grain boundaries as sinks for dislocations, Philosophical Magazine, Vol. 22, pp. 707–715, 1970.
[71]        Cruz V., Chao Q., Birbilis N., Fabijanic D., Hodgson P.D., Thomas S., Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting, Corrosion Science, Vol. 164, p. 108314, 2020.
[72]        Wang X.Y., Li D.Y., Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel, Electrochimica Acta, Vol. 47, pp. 3939–3947, 2002.
[73]        Balakrishnan A., Lee B.C., Kim T.N., Panigrahi B.B., Corrosion behaviour of ultrafine grained titanium in simulated body fluid for implant application, Trends in Biomaterials & Artificial Organs, Vol. 22, pp. 54–60, 2008.
[74]        Hoseini M., Shahryari A., Omanovic S., Szpunar J.A., Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing, Corrosion Science, Vol. 51, pp. 3064–3067, 2009.
[75]        Li W., Li D.Y., Variations of work function and corrosion behaviors of deformed copper surfaces, Appied. Surface Science, Vol. 240, pp. 388–395, 2005.
[76]        Kim S.H., Erb U., Aust K.T., Palumbo G., Effect of texture on the corrosion behaviour of high purity aluminum, Materials Science Forum, Vol. 408–412, pp. 1043–1048, 2002.
[77]        Karthik D., Jiang J., Hu Y., Yao Z., Effect of multiple laser shock peening on microstructure, crystallographic texture and pitting corrosion of Aluminum-Lithium alloy 2060-T8, Surface and Coatings Technology, Vol. 421, pp. 127354, 2021.
[78]        Gerashi E., Alizadeh R., Langdon T.G., Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: A review, Journal of Magnesium and Alloys,  2021.