بهینه‌سازی چندهدفی انتقال گرما و میدان سیال با پرنتل های مختلف در مبادله‌کن‌های جریان عرضی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی مکانیک / دانشگاه صنعتی امیزکبیر

2 دانشگاه اراک

چکیده

در این مقاله بهینه­سازی چندهدفی انتقال گرما و میدان سیال در مبادله‌کن‌های جریان عرضی با آرایش مثلثی و مربعی، با بهره­گیری از تکنیک­های دینامیک سیالات محاسباتی و الگوریتم ژنتیک چندهدفی انجام می­گیرد. در ابتدا، جریان سیال به صورت عددی در 150 مبادله‌کن‌ با شکل هندسی مختلف با استفاده از تکنیک­های عددی حل شده و تمامی پارامترهای عملکردی مهم شامل: میزان شار حرارتی، حداکثر دمای دیواره­ها، افزایش دمای سیال و افت فشار سیال در مبادله‌کن‌های مذکور محاسبه می­شود. سپس، داده­های عددی محاسبه شده برای بهینه­سازی چندهدفی جریان سیال در مبادله‌کن‌های جریان عرضی با استفاده از الگوریتم ژنتیک چندهدفی مورد استفاده قرار می­گیرند. در فرآیند بهینه­سازی چندهدفی، دو پارامتر هندسی به عنوان متغیر طراحی وجود دارند و توابع هدف متضاد نیز، حداکثر نمودن مقدار انتقال گرما و حداقل نمودن افت فشار در مبادله‌کن‌ها می­باشند. در قسمت نتایج، نمودار پارتو که شامل اطلاعات مهم و مفید در طراحی حرارتی و سیالاتی مبادله‌کن‌های مذکور می­باشد، برای هر دو چیدمان مثلثی و مربعی ارائه شده است و به تفصیل به بحث و بررسی در مورد ابعاد مختلف آن پرداخته شده است.

کلیدواژه‌ها

موضوعات


[1] Sanaye S. and Hajabdollahi H. Multi-objective optimization of shell and tube heat exchangers, Applied Thermal Engineering, Vol. 30, pp. 1937-1945, 2010.
[2] Costa L.H. and Queiroz M. Design optimization of shell-and-tube heat exchangers. Applied Thermal Engineering, Vol. 28, pp. 1798-1805, 2008.
[3] Ramananda K. Rao, U. Shrinivasa  and J. Srinivasan. Synthesis of cost optimal shelland- tube heat exchangers. Heat Transfer Engineering Vol. 12, No. 3, pp. 47-55, 1991.
[4] Fesanghary M., Damangir E.and Soleimani I.. Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Applied Thermal Engineering , Vol. 29, pp. 1026-1031, 2009.
[5] Ponce-Ortega J.M., Serna-Gonzalez M., Salcedo-Estrada L.I. and Jimenez- Gutierrez A.. Minimum-investment design of multiple shell and tube heat exchangers using a MINLP formulation. Chemical Engineering Research and Design Part A (October 2006).
[6] Ponce-Ortega J.M., Serna-Gonzalez M.and Jimenez-Gutierrez A.. Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Applied Thermal Engineering , Vol. 29, pp. 203-209, 2009.
[7] Ravagnani M.A.S.S. and Caballero J.A.. Optimal heat exchanger network synthesis with the detailed heat transfer equipment design. Computers and Chemical Engineering Vol. 31, pp. 1432-1448, 2007.
[8] Caputo A.C., Pelagagge P.M. and Salini P.. Heat exchanger design based on economic optimization. Applied Thermal Engineering, Vol. 28, pp. 1151-1159, 2008.
[9] Özçelik Y.. Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm. Applied Thermal Engineering , Vol. 27, pp. 1849-1856, 2007.
[10] Bejan A., G. Tsatsaronis and M. Moran. Thermal design and optimization. Wiley Interscience (1995).
[11] Johannessen E., L. Nummedal and S. Kjelstrup. Minimizing the entropy production in heat exchange. International Journal of Heat and Mass Transfer , Vol. 45, pp. 2649-2654, 2002.
[12] Sun S., Y. Lu and C. Yan. Optimization in calculation of shell-and-tube heat exchanger. International Communication in Heat and Mass Transfer Vol. 20 pp. 675-685, 1993.
[13] Agarwal A. and S.K. Gupta. Jumping gene adaptations of NSGA-II and their use in the multi-objective optimal design of shell and tube heat exchangers. Chemical Engineering Research and Design , Vol. 86, pp. 123-139, 2008.
[14] Hilbert R., G. Janiga, R. Baron and D. Thevenin. Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms. International Journal of Heat and Mass Transfer Vol. 49, pp. 2567-2577, 2006.
[15] Liu Z. and H. Cheng. Multi-objective optimization design analysis of primary surface recuperator for microturbines. Applied Thermal Engineering Vol. 28 pp. 601-610, 2008.
[16] Tian Z. , L. Ma, B. Gu, L. Yang, F. Liu. Numerical model of a parallel flow minichannel evaporator with new flow boiling heat transfer correlation. International Journal of Refrigeration Vol . 35 pp. 135-144, 2015.
[17] Huang L., V. Aute, R. Radermacher. A model for air-to-refrigerant microchannel condensers with variable tube and fin geometries. International Journal of Refrigeration. Vol. 40, pp. 269-281, 2014.
[18] Tian Z., B. Gu, L. Yang, F. Liu, Performance prediction for a parallel flow condenser based on artificial neural network, Applied Thermal Engineering, Vol. 63, pp. 459- 467, 2014.
[19] Rao R., V. Patel, Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm, International Journal of Thermal Sciences, vol. 49, pp. 1712-1721, 2010.
[20] Fabbri G., A genetic algorithm for fin profile optimization. International Journal of Heat and Mass Transfer. Vol. 40, pp. 2165-2172,  1997.
[21] Kobus C.J., R.B. Cavanaugh, A theoretical investigation into the optimal longitudinal profile of a horizontal pin fin of least material under the influence of pure forced and pure natural convection with a diameter-variable convective heat transfer coefficient, ASME Journal of  Heat Transfer , Vol. 128, 2006.
[22] Deb K., Agrawal S., Pratap A.and Meyarivan T., A fast and elitist multi-objective genetic algorithm: NSGA-II”. IEEE Trans Evolutionary Computation, Vol. 6, pp. 182-97, 2002.
[23] Safikhani H., Akhavan-Behabadi M. A., Nariman-Zadeh N. and Mahmoodabadi M. J., Modeling and multi-objective optimization of square cyclones using CFD and neural networks, Chemical Engineeing Research and Design, Vol. 89, pp. 301–309, 2011.
[24] Sanaye S. and Hajabdollahi H., Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm, Applied Energy, Vol. 87, pp. 1893–1902, 2010.
[25] Sanaye S. and Dehghandokht M., Modeling and multi-objective optimization of parallel flow condenser using evolutionary algorithm, Applied Energy , Vol. 88, pp. 1568–1577, 2011.
[26] Safikhani H, Modeling and multi-objective Pareto optimization of new cyclone separators using CFD, ANNs and NSGA II algorithm, Advanced Powder Technology , Vol. 27, pp. 2277-2284, 2016.
[27] Damavandi MD, Mousavi SM, Safikhani H, Pareto optimal design of swirl cooling chambers with tangential injection using CFD, GMDH-type of ANN and NSGA-II algorithm, International Journal of Thermal Sciences , Vol. 122, pp. 102-114., 2017.
[28]Safikhani H, Eiamsa-Ard S, Multi-objective optimization of turbulent tube flows over diamond-shaped turbulators, Heat Transfer Engineering , Vol. 37, pp1579-1584, 2016.
[29] Bejan A, Convective Heat Transfer, Wiley, 2003.